In our own image? Emotional and neural processing differences when observing human–human vs human–robot interactions
نویسندگان
چکیده
Notwithstanding the significant role that human-robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human-human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal-parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots.
منابع مشابه
A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملQuality Assessment of Turfgrasses Using NTEP Method Compared to an Image-Based Scoring System
The current methods of turfgrass evaluations are often based on human-based assessment methods. However, eliminating subjective errors from such evaluations is often impossible. This research compared the accuracy of human-based and digital image processing-based methods for quality assessment of turfgrasses. Four turfgrass plots were evaluated using the two mentioned methods. In the human-base...
متن کاملQuality Assessment of Turfgrasses Using NTEP Method Compared to an Image-Based Scoring System
The current methods of turfgrass evaluations are often based on human-based assessment methods. However, eliminating subjective errors from such evaluations is often impossible. This research compared the accuracy of human-based and digital image processing-based methods for quality assessment of turfgrasses. Four turfgrass plots were evaluated using the two mentioned methods. In the human-base...
متن کاملControl of a Robotic Wheel-Chair Prototype for People with Walking Disabilities
In this paper we present a system that could be used to help people with walking disabilities. A system consists of a prototype mobile robot platform equipped with a control board and a remote computer system, running with image processing algorithms, was used to develop a system for physically disabled human to move freely in an environment. We used a camera to get visual information by a huma...
متن کامل